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Instability and river channels 

By R. A. CALLANDER 
School of Engineering, University of Auckland, New Zedand 

(Received 9 November 1967 and in revised form 12 November 1968) 

A linearized stability analysis of the flow of water in a channel with a loose bed 
and straight banks is described. It is assumed that the wavelength of the per- 
turbations, which develop into meanders or braids, is longer than the width of 
the channel. It is therefore long compared with the ripples or dunes which cover 
the bed of such a channel and whose wavelength is shorter than the width of the 
channel. The latter need be allowed for only as roughness elements creating 
resistance. The variation of resistance to flow and rate of transport of bed material 
with velocity are discussed briefly and taken into account. Instability is interpre- 
ted as leading to a meandering or braided channel and it is shown that all 
practicable channels are unstable. Wavelengths calculated for channels expected 
to meander are compatible with those given by Inglis’s empirical rule and 
wavelengths calculated for channels which become braided are approximately 
the same as those observed. 

1. Introduction 
Meandering and braided channels have two characteristics of interest. The 

first is that they occur at  all and the second is the strength of empirical relation- 
ships between meander dimensions and rate of flow. In  this paper, it  is assumed 
that meanders and braids occur because of instability and a linearized analysis 
is used to classify individual channels as stable or unstable and to calculate the 
wavelength of the meandering or braided pattern which will develop. 

The concept of dynamic instability and reasoning based on it have appeared 
in several papers about channels with loose boundaries. White (1939, 1948) 
suggested, as a result of his experiments, that instability of the bed is the cause 
of meandering. Kennedy (1963), Reynolds (1965) and Hansen (1967) presented 
theoretical studies of the stability of erodible channels. Kennedy and Reynolds 
investigated the occurrence of ripples, dunes and antidunes on the bed and 
Reynolds, in addition, discussed meanders. Hansen’s paper is about meanders. 

2. Qualitative analysis 
The mechanism whereby a disturbance to the flow in an erodible channel may 

cause an increase in its own amplitude can be discussed qualitatively. Figure 1 (a )  
is a plan view of a straight channel showing five streamlines, all initially straight. 
These have been deformed by an arbitrary periodic disturbance. Assuming that 
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the Bernoulli equation can be used for this qualitative discussion only, considera- 
tion of energy and continuity shows that the surface is lowered on the inside of 
a curve (at A and C, for example) and the velocity increased. On the outside of 
a curve (e.g. at  B)  the surface is raised and the velocity reduced (figure 1 ( b ) ) .  That 
is to say, the velocity of the water decreases as it flows from A to B and increases 
as it flows from B to C. Assuming that the rate of transport of bed load increases 
with velocity, the bed must rise between A and B and fall between B and C as 
time passes. This will happen if a wave forms on the bed as shown in figure 1 ( c ) ,  

A G 

(ci 
FIGURE 1. Sketches of disturbed flow. (a )  Plan. ( b ) ,  (c) Elevations. 

the wave travelling downstream. If the flow is subscritical (Froude number less 
than 1) these changes of bed level will cause a further lowering of the surface at 
A and C and an increase in surface elevation at  B. Thus, the initial changes bring 
about further changes of the same sign. The time scale of these changes is large. 

This tendency towards instability may be modified by the characteristics of 
the resistance to flow. Vanoni & Brooks (1957), Raudkivi (1963) and Kennedy 
& Brooks (1965) have shown how the drag coefficient f for an erodible bed varies 
with velocity. Consequently, the bed shear stress 7 ( = &fpP2) is also a function 
of velocity V and figure 4 shows typical curves. (The data on which these are 
based are discussed later.) If the bed material is fine grained, there may be a 
range of velocity through which the bed shear stress decreases as the velocity 
increases. Then, an increase in velocity can, by making the bed less rough, 
cause a further increase. 

The characteristics of the resistance curve are such as to increase the instability 
inherent in the relationship for rate of transport of bed load when the bed shear 
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stress decreases with increase of velocity and to decrease it when the bed shear 
stress increases with velocity. It must be emphasized that the stabilizing effect 
of the positive slope of the bed shear stress curve may not be great enough to 
reverse the tendency towards instability caused by positive slope of the bed 
load transport curve. 

This argument is not precise or complete, but it does show a mechanism of 
instability. The following mathematical argument leads to conclusions which are 
more precise, within the limitations of the assumptions. 

3. Equations of motion 
The linearized stability analysis is used to investigate the flow in a wide shallow 

channel and the undisturbed flow is taken to be steady and uniform. Because the 
bed is deformed into the appropriate configuration of small moving bed features, 
the flow is not, in fact, either steady or uniform. However, it is assumed that these 
bed features can be taken as the cause, along with surface drag, of the resistance 
to flow, but can be otherwise ignored. 

"I 

Water surface 
d h  

-Bed of channel 
t 

Horizontal datum X 0- 

FIGURE 2. Vertical section on centre line of channel illustrating system of co-ordinates, 
O X ,  O Y  (not shown) and 02 are right-handed Cartesian set of axes. 

The co-ordinate system is defined in figure 2, the axis OX being horizontal and 
in the same vertical plane as the centre line of the channel. 0 Y is horizontal and 
transverse to the channel centre line and 02 is vertical. The depth of flow at any 
point is d and the elevation of the surface above a horizontal datum is h. The mean 
slope of the ripple or dune covered bed is So, positive when the bed descends in 
the direction of flow. Since So is small, the velocity alongthe channel parallel to 
the bed is assumed to be equal to u, the component parallel to OX.  

The force-momentum equations for unit volume of water are 

au au au ah r 
p-+pu-+pv- = - y - - -  at ax ay ax d' 
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The equation of continuity for the water is 

and the equation of continuity for the bed material is 
- ( h - d ) + g + a  a ("L) = 0. 
at ax ay 7 (4) 

These three terms represent the rate at  which bed material is stored in an 
elementary stationary control volume, the net rate of outflow from the control 
volume in the direction of increasing x and the net rate of outflow in the direction 
of increasing y. 

The density of the fluid is p,  y is its specific weight, r is the bed shear stress 
and L is the rate of transport of bed load in units of space occupied in the bed 
per unit of time per unit of width of the channel. 

The following assumptions have been made: (a )  the velocity is uniformly 
distributed through the depth of flow and the vertical component is zero; ( b )  the 
pressure distribution is hydrostatic; (c) the gradient of shear stress, T ~ ~ ,  through 
the depth of flow is constant and equal to its average r / d  ( T ~ ~  is the component 
of shear stress parallel to OX on a surface normal to 08); ( d )  the gradient of 
shear stress, rux, across the flow is zero (ryx is the componciit of shear stress 
parallel to OX on a surface normal to O Y ) ;  ( e )  the bed shear stress is parallel to 
the resultant velocity V ,  which is the vector sum of the components u and v; 
(f) the movement of the bed load is in the direction of the resultant velocity. 

Assumptions (a)  and ( e )  imply that secondary currents have been ignored. 
These currents are driven by superelevation of the surface and, even in a bend 
with pronounced curvature, they are small relative to the lontigudinal velocity. 
In this analysis infinitesimal disturbances to flow in a straight channel are in- 
vestigated so that superelevation of the surface is infinitesimal; it is assumed that 
the secondary currents driven by this small transverse slope are an order of size 
smaller than the perturbations to the components of velocity. 

These equations must be satisfied for the initial undisturbed flow when u = U ,  
v = 0, d = do, T = r,, L = Lo and h = h,-X,x, whence 

They must also be satisfied for the perturbed motion when u = U + u', v = u', 
d = do + d', T = T ,  + T', L = Lo + L' and h = h, - Sox + h'. Substitution of these 
and ( 5 )  in (1)-(4) yields, after dropping products and powers of the primed 
variables and their differentials as second-order small quantities 

70 = yd,S,. ( 5 )  
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4. Resistance to flow and rate of transport of bed load 
Equations (6)-( 9) contain six variables, the disturbances to the components 

of velocity, depth, surface elevation, bed shear stress and rate of transport of 
bed load. To proceed further, two more equations are required. It is assumed that 
bed shear stress and rate of transport of bed load are both functions of velocity. 
Both dependent variables are averaged over an area of the order of size of one 
bed feature, i.e. one ripple or dune. (These ripples or dunes are created by the 
flow and are of appreciably smaller wavelength than the disturbance t o  the mean 
bed profile.) In  this way the effects of surface drag and form drag are both 
included. The local average drag and transport rate vary over the wavelength 
of the main disturbance and the width of the channel. 

It is not possible to  quote equations which are generally applicable and the 
necessary functions must be found by experiment. The shape of the curve relating 
bed shear stress to mean velocity is well established from the experiments of 
Vanoni & Brooks (1957), Raudkivi (1963, 1967) and Kennedy & Brooks (1965). 
It consists of a base parabola corresponding to surface drag on a flat bed and, 
superimposed on the parabola, the form drag which first increases with velocity, 
then decreases as the bed features are erased. 

Formulas for rate of transport of bed load usually have a bed shear stress for 
their argument. However, it is not clear how much the form drag contributes to 
transport of bed load, because it does not do so directly. The form drag on one of 
the small scale bed features is related to the fluid shear in the shear layer between 
the separated flow and the wake in the lee of the bed feature. Turbulencegenerated 
in the shear layer agitates the grains of the bed, where it reattaches and for some 
distance downstream, so increasing the mobility of the grains. Not all of the form 
drag is effective in this way because not all of the turbulence generated in the 
shear layer survives near the bed. Experiments show that bed load transport 
can be correlated with mean velocity so that the parts played by surface drag 
and form drag need not be known for this analysis. 

Experimentally determined functions relating bed shear stress and rate of 
transport of bed load are assumed to be available for any particular channel. 
Then, r‘ and L’ can be eliminated by using 

r’ = m,u’, (10) 

L’ = m,u’, (11) 
where m,, m2 are the local slopes of the respective functions. 

5. Stability analysis 
Using (lo),  (11), the equations of motion become, after rearrangement 

1 av’ uav‘ ah’ vf --+ --=-- 8 -- 
g at g ax a~ O U ’  
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{m, U/T0 + ikFt( 1 - c ) }  - 1 ik 
1 1-c  0 

c - c  %/dO 

a d  ad’ avl ad‘ a -+u-+a - + - - 0 ,  
O ax ax O ay at 

ah’ ad’ au’ ~ , a v l  --- + m  -+-- = 0. 
at at ax u ay 

(14) 

(15) 

The solution postulated is 

A ,  B,  D and H are dimensionless complex functions of y, k is the dimensionless 
wave-number of each sinusoidal disturbance and c = c, + ic, is the dimensionless 
complex celerity. Equations (lo), (11) imply that 7’ and L’ are in phase with u’. 
The other disturbances v’, d’ and R’ will, in general, not be in phase with u‘, the 
phase displacement being given by the real and imaginary parts of A, B, D and H .  

Substitution of the postulated solution in (12)-( 15) leads to the following set: 

(ml U / T ~  + ikJ’t( 1 - c)} A - D + ikH = 0, (16) 

(17) (1 + i k q (  1 - c) }  B = - (do/So) H’, 

1 do A + ( l - c ) D = i - - B ’ ,  k SO 

m . Lo 1 d  
do 0 0  
>A+cD-cH = mi$B’. 

B’ and H‘ are the differentials with respect to y of B and H respectively and 
Po = U/,/(gd,) is the Froude number of the undisturbed flow. 

When A and D are eliminated from (16), (18) and (19) the result gives H in 
terms of B’. This equation can then be used with (17) to eliminate H and the 
resulting ordinary differential equation is 

B” + hB = 0, (20) 
where h is a complex eigenvalue given by 
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The boundary condition to  be satisfied by (20) is B = 0 at  y = k b, where b 
is the half width of the channel. This requirement has to be satisfied for the banks 
to remain straight and parallel. (Growth of an unstable perturbation to the bed 
will lead to a single or multiple thread pattern of alternating pools and bars. If 
the banks cannot resist erosion a meander will develop from the initial disturb- 
ance to the bed of the straight channel.) 

To satisfy the boundary condition it is necessary that 

Reh > 0, 

Imh = 0, 
and the solution for B is 

= Y  B = Pcosn-- 
2 b  

(n = 1,3,5,  ...). 

Hence h = (nn-/2l1)~ 

and 

where 

Using (23) in (21) 

(24) 
- lJ2 {kP; (1 - c )  - i> (det C )  - - 

IC ( & - ? ) + ( * + i k F ; ( l - c )  Ud,  do 70 

Equation (24) is reduced to a pair of linear simultaneous equations in cr and ci 
by expanding the right side and making use of the fact that certain variables 
are small, as follows: kFg < 1 ,  

Cr < 1 ,  

m2ldo < 1,  

LOlUd, < 1 ,  
Lo/ Ud, - c, < 1 .  

Products and powers of c,, ci are also negligible. The linear equations obtained are 

a l l c , + a l z c i  = b,, ( 25 )  

a21 cr + a22ci = b2, (26) 

where 
v2ml U 
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6. Discussion of theory 
c, and c, are both functions of the following six variables. 
(i) Channel properties: (a)  Fo, Froude number of the undisturbed flow; 

( b )  m, U/ro,  dimensionless local slope of the resistance curve; ( c )  m2/do, dimension- 
less local slope of the bed load transport curve; (d )  Lo/Udo, concentration of bed 
load in the undisturbed flow. 

(ii) Disturbance properties: (a)  k ,  dimensionless wave-number; ( b )  (nn/X,,) d0/2b, 
number of lanes into which the channel is divided longitudinally by the dis- 
turbance. Channel properties are also included, mean slope and aspect ratio 
of the cross-section. 

If the properties of a particular flow in a particular channel are known, it is 
possible to calculate c, and ci for ranges of values of the disturbance properties. 
The sign of ci identifies stable and unstable conditions and Uc, is the speed of 
migration of the disturbance. 

The value of n to be used for channels expected to meander is 1. Higher values 
of n subdivide the channel longitudinally and are related to braiding. A significant 
value of the wave-number can be obtained by following Kennedy (1963) and 
finding the maximum value of kc,. 

Thus, if c,, ci and kci are all computed as functions of k for a given flow in a 
given channel, meandering (n = 1)  or braiding (n > 1) is prcdicted if ci > 0 when 
kc, is a maximum and the wavelength and speed of migration will be given by 
the corresponding values of k and c,. 

A general analysis of stability can be made. If m, U/ro  + 0,  a curve showing 
kci versus k passes through the origin with zero slope. When k is small, 

The rate oftransport of bed load can be related to mean velocity by an empirical 
exponential relationship of the form Lo cc UN, so that 

Generally, v is large and m1 U / T ~  much smaller, and N > 1 so that the curve kci 
versus Ic turns upwards as sketched in figure 3. The curve passes through a 
maximum and approaches a horizontal asymptote. The maximum occurs with 
a positive value of ci, so satisfying the condition for instability. 

Stability would be possible only with 1 + (m, U / T ~ )  positive and m, U / T ~  big 
enough to make 

v 2 F i  + (1 + (m, U/To)} -_ N < 1. 
v2Fg + (1 + (ml U/ro)>2 
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FIGURE 3. Sketches of kci versus k .  Only the parts of the function for real positive values of 
Ic are shown. Curve (a )  is for m, U/ro + 0 and curve ( b )  is for m, U/ro= 0. As k 3 03 each 
curve tends to a horizontal asymptote given by 

rnzl U 
7 0  

This requires - > (QN - 1 )  + J [ ( N  - 1)  v2F; + (+N)2] ,  

which is much bigger than values expected to occur. 
If m,U/7,, = 0 the curve crosses k = 0 with zero slope and with 

For small values of k 

where 

r = (1 -F i )2+Ft+2~2F$(1 -F$) ,  

s = ( 1  + V Z B i ) 2 .  

Since N > 1, kc, > 0 when k = 0. As far as the author knows, the combination 
m1 = 0 with Fo > 1 has not been observed, so that the curve showing kc, versus I% 
has a maximum at k = 0 and turns down to an asymptote as sketched in figure 3. 
However, if conditions can be such as to make the curve turn up, it must pass 
through a maximum with ci > 0 to reach the asymptote. In neither case can the 
channel be stable. 

Hence all feasible channels are unstable, large values of m,U/rO being ex- 
cluded as impracticable. 

Expcrirnents described below provided data for numerical calculations, the 
work being done on an IBM 1130 computer. 
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7. Experiments 
Three sets of experiments have been used to test the analysis. One comprises 

seven runs carried out in Auckland. The other two sets were selected from those 
described by Leopold & Wolman (1957). Five channels, in fine sand, were single 
thread channels and four in medium sand became braided. 

The Auckland experiments were made in a tilting flume with a working section 
40 ft. long by 8 ft. wide. It contains sand (mean size 0-45 mm) to a depth of 9 in. 
and is equipped with a sand feed by means of which dry sand can be fed into the 
experimental channel at a controlled rate. There is a balance at  the downstream 
end so that the sand output rate can be measured. Water is circulated by means 
of a pump and the rate of flow is measured with an orifice meter or a bend meter. 
A detailed description of the apparatus has been published (Callander 1966). 

/ 
0 2  (1. 1 0.6 0.8 1.2 1.4 

Velocity (ft./sec) 

FIGURE 4. Bed shear stress versus mean velocity. Results identified by run number except 
for three flat bed runs a t  low velocity by Callander. + , Callander; 0, Leopold & Wolman, 
find sand; , Leopold & Wolman, medium sand. 

For the stability tests a straight pilot channel with a trapezoidal section 5 in. 
deep, loin. wide at the bottom and 30in. wide at  the top was cut in the sand. 
Water was circulated at a constant rate for each run and sand was fed in at a 
constant rate. The rate of sand feed and the slope of the flume were chosen by 
trial and error so as to give approximately uniform flow in the fully developed 
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channel. During development of a channel, its width increased, its depth de- 
creased and a set of bed features was formed. The duration of individual runs 
ranged from 16 h to 2250 h. 

When a channel was considered to be fully developed, measurements of water 
surface slope and cross-sections were made. From these, the mean bed shear 
stress, mean velocity, Froude number and rate of transport of bed load per unit 
width of channel were calculated. 

1.0 10.0 

Velocity (ft./sec) 

FIGURE 5. Rate of transport of bed load per unit width of channel ver8u.s mean velocity. 
Results identified by run number. +, Callander; 0, Leopold & Wolman, h e  sand; 
m, Leopold & Wolman, medium sand. Assumed bulk density 100Ib./ft.a. 

The results of these measurements are shown on figures 4 and 5. In  addition 
to data from runs 1-7, figure 4 shows three observations made on the pilot 
channel without bed features. One of these was just beyond the threshold of 
grain movement, the measurements being made before bed features had de- 
veloped. The other two were at  subthreshold velocities. On figure 5 the bed load 
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transport and velocity are plotted on logarithmic scales and a least squares 
straight line has been drawn through the seven points. Its equat'ion is 

From these curves, the parameters m, U/ro  and nz2/d0 can be calculated for 
each run. The value of m,/do is most readily found from the concentration of bed 
load Lo/ U d ,  since the exponential relationship 

L, cc u594 (30) 

leads to 

Figure 4 gives the slope m, near each point and this has been used with the 
plotted values of U and r0 to give m, U/ro. 

The data from Leopold & Wolman are also plotted on figures 4 and 5 .  Using 
figure 4, m, U/r0  was calculated as above and for m2/d0, equation (30) has been 
assumed to be valid. 

The details of the results of the Auckland experiments are in table 1. Similar 
information is given by Leopold & Wolman for their channels. 

Run no. 
Discharge, ft.3/sec 
Bed load, lb./sec 
Bed load/ft., ft.s/sec 
Slope 
Area, ft.* 
Breadth, ft. 
Mean depth, ft. 
Velocity, ft./sec 
Bed shear, Ibf./fk2 
Duration, hours 
Classification 

5 

327 x 

1.71 x 
1.035 
7.56 
0.137 
1.33 
0.0146 
16 
Unstable 

1.38 

433 x 10-7 

2 
0.87 
63 x 10-4 

1.23 x 10-3 
115 x 

0.832 
5.99 
0.139 
1.05 
0.0107 
64  
Stable 

4 
0.75 
29 x 10-4 
42.0 x 10-7 
1.58 x 10-3 
0.897 
6-90 
0.130 
0.836 
0.0128 
180 
Stablo 

TABLE 1 

3 
0.63 
12 x 10-4 
19.3 x 10-7 
1-43 x 10-3 
0.891 
6.23 
0,143 
0.707 
0.0128 
196 
Unstable 

1 
0.52 
5 x 10-4 
9.1 x 10-7 
1.44 x 
0.786 
5.15 
0,153 
0.660 
0.0137 
144 
Unstable 

6 
0.30 
I x 10-4 
2.2 x 10-7 
1.42 x 10-3 
0,609 
4.58 
0.133 
0.505 
0.0118 
1097 

Unstable 

7 
0.28 
0.35 x 10-4 
0.88 x 10-7 
1.079 x 10-3 
0.547 
3.96 
0.139 
0.512 
0.00935 
2250 
Unstable 

Table 2 contains the data used as input for the calculations for cr, c6 and lcci as 
functions of lc and v. For all channels except those in set 3, n = 1, being the value 
related to meandering. Leopold & Wolman reported the channels in set 3 as 
braided and figure 34 of their paper suggests that n = 3 and that the wavelength 
of the disturbance is of the same order of size as the width of the channel. 

Values of cr, ci and k at the maximum of kci are given in table 3, where corre- 
sponding calculated wavelengths are also shown. 

8. Discussion of results 
The calculated values of ci are all positive. It is not easy to test this conclusion 

because of the difficulty of defining an objective criterion for stability in the 
experimental channels. In runs 1, 3, 5 ,  6, 7,  of set 1, an alternating pool and bar 
configuration could be seen on the bed at the end of the run and it was easy to 
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m,U 

7 0  

- 0.140 
- 0.869 
- 0.344 
- 0.597 
+ 5.25 
+ 2.81 
+ 8.98 

- 4.04 
- 3.26 
+ 0.785 
- 2.64 
- 1.203 

+ 6.93 
+ 9.15 
+ 7-00 
+ 6.50 

Set 1. Callander 
57-0 x 9.60 x 0.298 
468 x 78.8 x 0.496 
113 x 10-6 19.1 x 10-8 0.329 
229 x 38.6 x 0.408 
1412 x 238 x 0.633 
19.5 x 10-6 3.28 x lop6 0.244 
7-36 x 10-6 1-24 x 0.242 

Set 2. Leopold & Wolman, fine sand 
6.45 x 10.88 x lop5 0.607 

21.7 x 10-4 36.6 x 10-5 0.442 

4.35 x 10-4 7.33 x 0.502 
3.34 x 10-4 5.63 x lop5 0.368 

5.95 x 10-4 10.02 x 10-5 0.290 

Set 3. Leopold & Wolman, medium sand 
3.22 x 10-3 5.43 x 10-4 1.025 
3.03 x 10-3 5-10 x 10-4 1.017 

6.91 x 11.67 x lo-* 0.998 
3.08 x 5-19 x 10-4 0.900 

TABLE 2 

nr do 
So 26 
- .- 

64.8 
59.4 
50.5 
37.5 
33.3 
64.3 

102-3 

150 
200 

100.5 
48.9 
61.8 

44.3 
45.0 
50.2 
42.9 

n 

1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 

3 
3 
3 
3 

Run 
no. 

22 

24 
25 
27 

23 ( b )  

h 
Ci Ic ft. 

Set 1. Callandcr 
2.322 x 5.932 x 8.5 78-5 
1.289 x 1.198 x 10-4 11 64.5 
4.298 x 7.330 x 10 62.8 
8.339 x 9.734 x 10-6 9 57.5 
6.785 x 1.631 x lo-* 24 21.0 
6.691 x 9.963 x lo-' 29.5 20.0 
4.520 x 1.349 x 130.5 6.20 

Set 2. Leopold & Wolman, fino sand 
1.42 x 10-4 4.17 x 10-5 25 6.52 
5.05 x 10-4 1.802 x 36 7-36 
8.46 x 10-5 1-67 x 10-4 29 4-25 
1.36 x 4-89 x 10-5 13.6 '7.05 
1-13 x 1 0 - 4  7.81 x 17 8-89 

Set 3. Leopold & Wolman, medium sand 
1.55 x 10-3 1.76 x 10-4 25 1.40 
1.49 x 1.95 x 10-4 26 1.52 
1.47 x 10-3 1.86 x 10-4 30 1.43 
3.235 x 3.953 x 10-4 24 1.52 

Width 
ft. 

1.19 
1.32 
1.28 
1.27 

TABLE 3 
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classify these as unstable. The bed in runs 2 and 4 was classified as stable, but 
this may have been wrong. As shown in table 3, the calculated wavelength is 
longer than the flume for some runs, including these two. 

Leopold & Wolman did not comment on the configuration of their channels 
in fine sand. However, they draw attention to the rarity of straight channels 
and it is assumed that their experimental channels in h e  sand formed meanders, 
or would have formed meanders had the experiments continued. 

The channels of Leopold & Wolman which became braided (set 3) can be classi- 
fied as unstable. 

Numerical calculations classified all sixteen channels as unstable, consistent 
with the general analysis. In  nine cases, the appearance of the channel confirmed 
the instability. In  the other seven, the disagreement was not conclusive. 

The wavelengths have been calculated using Kennedy's criterion. Provided 
m1U/70 0,  no difficulty arises from use of this criterion, but if m,U/rO = 0, 
it gives k = 0 and the only solution for (16)-( 19) is the trivial one 

However, k need be only infinitesimally greater than zero to permit non-zero 
values for A ,  B, D and H with the same value of kc,. Alternatively, a small 
departure from zero in m, U/70 would allow the criterion to give a realistic solu- 
tion; and such a departure is plausible if some uncertainty is allowed in assigning 
a value to m,U/70. These considerations lead to the conclusion that another 
criterion for instability might be more useful. It is suggested that instabi1it)y 
will occur for k between those values which make kci greater than 0.95 (or a 
similar arbitraryfraction) of itsmaximum. The perturbationwith the largest early 
amplitude is one of this set. Its wavelength is not known, but is assumed to be 
within the range given by the above criterion. 

Table 4 shows the range of wavelengths estimated in this way for the channels 
in sets 1 and 2. Also shown is the range for data interpolated from set 1 with 
m1 = 0. 

For each channel, the predicted range of wavelength is compared with the 
empirical rule given by Inglis (1949) 

The predicted wavelengths are all compatible with Inglis's observations. 
In  the case of the braided channels, the wavelengths have been calculated 

using the Kennedy criterion (table 3) and the modified criterion (table 4). They 
are of the same order of size as the widths of the channels, and this is reasonable. 

A = B = D = H = 0. 

ML = 36QO.5. 

9. Conclusions 
The linearized stability analysis using a simplified description of the flow 

shows that channels with loose boundaries are unstable, with the possible excep- 
tion of channels just beyond the threshold of grain movement. This exception 
is not important in practice because such conditions are unlikely to occur. 
Realistic estimates of the wavelengths in meandering and braided channels can 
also be made. 
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Run no. 36Q0.6 Width Ic Wavelength 

1 26.0 
2 33.6 
3 28.6 
4 31.2 
6 42.4 
6 19.7 
7 19.0 

25.0 

Set 1. Callander 
- 4.7-15.0 
- 7.6-15.8 
- 6-9-14-6 
- 6.6-12.0 

- 19.6-38-3 
- 20.7-28.2 

- 113-151 

- 0-1 10 
Interpolated (m, = 0) 

47-149 
46-93 
43-92 
43-78 

15-30 
54-7.2 

18-24 

> 60.1 

Set 2. Leopold & Wolman, h e  sand 
- 22 4.84 18-5-32-0 5.1-8.8 

6.55 - 27.2-46'9 5.7-9- 7 
24 4.70 - 20.0-42.7 2.9-6.2 
25 6.25 - 11.0-16.0 6.0-8.6 

23V) 

27 8.23 - 12-9-2 1.0 7.2-11.7 

Set 3. Leopold & Wolman, medium sand 
2 (b )  - 1-19 20.5-27'6 1.27-1.71 

- 1.32 22.4-29.2 1-35-1.76 
- 1.28 25-0-34.2 1.26-1.72 

1.27 19.8-27.0 1-35-1.84 

4@) 
6 (4 

- 

TABLE 4 

No other conclusions can be drawn from the analysis about the flow as the 
amplitude of the disturbance grows because important characteristics of curved 
flows are omitted. In  particular, secondary currents affect the distribution of 
fluid momentum and bed material, if the curvature is not very small. 
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